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Abstract. The dynamics of two interacting Thirring fields has been investigated within the 
dimensional regularization framework. The coupling constants are renormalized in the 
same way as observed in the non-perturbative approach of Ansel’m et al. Functions 
p,(gl, g,, g3) and y,(g,, g,, g,), pertaining to the stability and anomalous behaviour of the 
problem, are computed up to third order in the coupling parameters. With the help of these, 
subsidiary non-linear differential equations of the renormalization group are studied in 2-e 
dimension. The results show up some peculiar features of the theory: a zero of p,(g,, g,, g,) 
corresponding to g, f a d e ,  a characteristic of 43 theory. The scale invariant limit is reached 
when g, + 0 (i.e. the two Thirring fields are decoupled) and also when g ,  = xg, = g,, where x 
is a root of 2 x 3  + 2x2 - 1 = 0. The branch-point zero makes the transition to the E + 0 limit 
non-unique. The anomalous dimensions are obtained and seen to match that of the 
Dashen-Frishman model. The existence of a non-trivial scale invariant limit distinguishes 
the model from many simple field theories. 

1. Introduction 

The study of asymptotic behaviour in quantum field theory in the light of present day 
experimental findings has been organized only recently, since the advent of the Callan 
(1 970) and Symanzik (197 1) equations and renormalization group (Bogoliubov and 
Shirkov 1900) equations. Though the asymptotic behaviour can only be assessed when 
the theory is exactly solvable, the Callan-Symanzik (cs) and renormalization group 
(RG) equations provide much information, not obtainable in each order of perturbation 
theory (as almost all the theories are not exactly solvable). One of the most interesting 
situations is presented by the Thirring model (exactly solvable) (Hagen 1967) and its 
SU(N) generalization, the Dashen-Frishman (DF) model (Dashen and Frishman 1973). 
The solvability of the Thirring model has been critically examined by Hagen (1 967) in 
the light of both the cs and RG equations while the p and y functions of the DF model 
have been computed and the corresponding stability problem has been discussed by 
Dashen and Frishman (1973). Intermediate between the two is the study of Mayer and 
Geieke (1973) who have shown that the usual Thirring model considered in 2 - E  
dimension does not possess an expansion in E .  But a further problem which is well 
worth studying is that of two Thirring fields (i.e. spin-; particles in two dimensions) 
interacting with each other as prescribed by the following Lagrangian: 
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Incidentally we may remark that this model was considered by Ansel'm (1959) and 
Dyatlov er a1 (1957) with an eye to asymptotic behaviour in an exact integral equation 
formalism. But for this situation, regarding stability, scale invariance and anomalous 
dimensions of the fields, we have made an elaborate study in the dimensional regulari- 
zation scheme of 't Hooft and Veltman (1972). The reason behind using dimensional 
regularization rather than the usual subtractive procedure of Bogoliubov and Parasiuk 
(1957) and Zimmermann (1970) is that one of our basic intentions is to explore the 
possibility of an E expansion of the theory. 

2. Formulation 

Lagrangian (1) immediately suggests that the net effect of figures 1 and 2 is to 
renormalize the mass of both the fields + and x, while figures 3 , 4  and 5 contribute to 
renormalizing the coupling constants g,, g2, g3.  Figure l(a) contributes 

(01 ( b l  (cl  ( d l  

Figure 1. One loop (first order in g) mass renormalization. Full lines represent ((t fields and 
wavy lines represent ,y fields in figures 1-5. 

(01 ( b l  ( c  I ( d l  

Figure 2. Two loop (second order in g) mass renormalization. 

( d  I ( e l  ( f l  

Figure 3. One loop coupling constant renormalization. 

Figure 4. Some diagrams of two loop (third order in g) renormalization. 
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R p e  5. 

Similarly for figures l(b), (c) and ( d ) .  In second order the two loop diagramstfigure 2) 
contribute 

4X dq dk I ( k 2 - m 2 ) ( q 2 - m 2 ) [ ( p - k + q ) 2 - m 2 ]  

gX dqdkx dx dz I a3{q2+2q(p- k)(xz/a)+[k2x +(p2-2p. k ) ~ ~ ] / a } ~ ’  
= 2! 

The integrations over q, k can be performed and one can write the integral in the 
following form: 

which can be explicitly evaluated by noticing that 

where Fl(a ,  p, p’, y, x, y)  is the generalized hypergeometric function of six arguments. 
So equation (4) reduces to 

which in the limit n -* 2 yields simply -$(2 - n). Taking care with the functions of (27r) 
occurring at each vertex we find that the contribution of figure 2(a) is - g2/47r2(2 - n). 

Turning now to the coupling constant renormalization, we first consider figures 3(a), 
3(b) etc. The most important point to notice about figure 3(a) is that its divergent 
contribution is exactly annulled by the contribution of its crossed graph (figure 3(b)) .  It 
is interesting to note that it is this mechanism which prevented the coupling constant in 
the usual Thirring model from being renormalized. So in second order we have no 
divergent contribution to the coupling constant renormalization. Thus we pass over to 
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the third-order diagrams depicted in figures 4 and 5. The contribution of the diagrams 
of figure 4 is given by 

I r,Tr[y”(Xl +m)y‘(g3+X1 -X+m)l(r‘(X+m)rA(g-X+m)~A) 
( k 2 -  m2) (k : -  m 2 ) [ ( p -  k)’-  m2][(p3+ kl - k)’- m’l 

r , ( f ’WI+m)yu)  Tr[(d3+X1-X+m)ru(X+ m ) r A ( d - X + m ) ~ A 1  
( k 2 -  m2)(k: -  m’)[(p - k)’- m’][(p3 + k - k d 2 -  m’l 

r,[ycI(Xl +m)r‘ (~3+X1 -X+m)r‘(X+m)rA((8-X+m)rAI, (6) 
(k’ - m2)(k:  - m2)[(p - k :  - m2][(p3 + k - kl)’- m’] 

Again the integrals involved can be written in the form (5) and we find the following 
contribution from figure 4(a): 

‘I 
+ 

1 i ln(p2/CL2) + 

g’(4.rr4(2-n)2-4?r4(2-n) (7) 

which is to be combined with the counter term diagram, whose contribution is equal to 

so figure 4(a) plus counter term yields 

The contributions of other graphs in the set are similar except for the coupling factors. 
Again, the contribution of a chain diagram in third order (figure 5 )  is 

which, when combined with its counter term contribution 

yields 

So collecting these results we have the following connection between renormalized and 
bare coupling constants: 
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2 + ’  * * 
g; = J1Z--n(gpf z x A 

81r4(2 - n) -41r4(2 - n)2 - 21r4(2 - n) 

(14) 

It is interesting to note that as the mixing interaction g2 + 0 we get gy = gy and gy = g: 
for the decoupled Thirring fields. In this connection it is worth mentioning that similar 
results were obtained by Ansel’m for the renormalized coupling constants from 
Schwinger-Dyson type integral equations in the asymptotic region. 

3. Group equations 

Following the usual technique of varying the unit of mass introduced in ’t Hooft’s 
method of renormalization, we obtain 

where g without a suffix stands for the full set (gl, g2, g3) and pk, y’ are determined 
according to 

, (16) y’ = - p- In Z; 
i a  

at bare values 2 dP at bare values 

Analyticity in the complex dimengional plane implies that the renormalization con- 
stants y’, p k  are all expressible as Laurent series, and computing in the manner of 
’t Hooft and Veltman (1972), we get 
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4. Solution and inferences 

Solution of the group equation (15) by invoking the homogeneity condition 

Here g k ( A )  are effective coupling constants defined by the equations 

A(dgk(A)/dA) = p k ( g k ( A ) ,  m/A, p )  (20) 

where p k  are the functions computed in equation (17). Equation (19) helps us obtain 
the asymptotic behaviour in a more rigorous manner than the usual order-by-order 
perturbation theory by making some assumptions about the functions p k ,  k = 1 ,2 ,3 .  
The functions in turn govern the characteristic properties of the effective charges. The 
effective charges can be obtained by analysing the solutions of the non-linear differen- 
tial equations (2). Written in full, these equations read 

Subtracting (21a) and (21c), we get 

This equation is identically satisfied by the solution gl -g3=0.  In searching for 
simultaneous zeros of the three p €unctions, we have to solve 

&[& + gl (g~  g 2 )  + &(gz &)I - E 2 2  = 0 
(23) st= g3 

which yields g2 = 0 or 

2g:+2g:+2glg2 = €(4a4/iy). (24) 

glg; + g: - E -  g1= 0, 

Also, p1 = 0 gives 
4 

(25) 
41r - 
iY 

so we get gl = g3 = xg2, where x is a solution of the equation 2x3 +2x2 - 1 = 0 and g2 is 
given by 

E:[ 1 + (l /x)]  = E .  (26) 
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Thus, apart from a free decoupled theory corresponding to g2 = 0, we can also have a 
non-trivial simultaneous zero of p k  given by equations (25) and (26). But the mere 
existence of zeros of p functions is not enough to clarify the physical characteristics of 
the problem. For a critical analysis, the corresponding stability problem has to be 
solved. If we denote apk /dgu ,  U =  1,2 ,3 ,  by p: then the problem is really the 
determination of the eigenvalues of the matrix p;, 

0 

The reality condition on the roots of (29) reads 

(2g:+ 2g:+4glg2)2+8~2g2(;!glg~i- 3g:)(gi gz+ g3) > 0 
or 

4(gl +g2)2+8~2g2(281g2+3g:)(g1 +g2+&)>o.  

Evaluating this at the non-trivial fixed point gl = g3 = xg2, we see that the above 
condition is really satisfied. So there is a non-trivial stable fixed point and the field 
theory is not asymptotically free. But the curious feature about the whole thing is that 
the solution of the matrix is O ( ~ / E ) ;  the reason why is not understood very well. 
Furthermore, at both the trivial and non-trivial fixed points the anomalous dimensions 
can be computed from equation (18) and are seen to reproduce those of the free 
Thirring model as g2 + 0. 
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